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Abstract—Because tests are important to the development
process, developers need to know when a test suite is missing
tests. Missing tests—tests that should be included in a test suite
but are not—reduce the utility that developers can derive from
a test suite. Currently, developers find missing tests by using
coverage information such as line coverage or mutation coverage.
However, coverage metrics are limited in their ability to reveal
missing tests and show only what code needs to be tested, not
how to test it.

We present a method for finding missing tests that addresses
the shortcomings of coverage metrics based on the fact that
similar code entities are often tested in the same way. We are able
to find what code is missing tests by identifying code entities which
are not tested in the same way as other similar entities. We then
show how a code entity with a missing test should be tested by
leveraging the tests written for those similar entities. Our results
show that our approach offers several benefits over a coverage-
based approach and is able to find missing tests in a range of
software projects while generating few erroneous identifications
of missing tests.

Index Terms—software testing, static analysis, maintenance

I. INTRODUCTION

Test suites are a beneficial software artifact that can support
many aspects of the software development process. For exam-
ple, they can give developers confidence that their applications
are working correctly (e.g., [1, 2]), enable large-scale changes
(e.g., [3, 4, 5]), and serve as a form of documentation
(e.g., [6, 7, 8]). Unfortunately, crafting test suites is a difficult
and time-consuming process, especially for modern software,
which is often large, complex, and imperfectly understood [9].
As a result, test suites are often missing tests (i.e., tests that
should be included in the test suite are not). For example, a
test suite may be missing a test for a particular method or it
may be missing tests for exceptional or unusual circumstances.
Such missing tests reduce the usefulness of the test suite and
prevent it from supporting the development of software.

Coverage criteria (e.g., [10, 11, 12, 13]), in which we
include various types of mutation testing (e.g., [14, 15, 16]),
are one approach used to detect missing tests. In the context
of testing, coverage metrics indicate which entities meet the
coverage criteria (are covered/killed) and which do not. Unmet
criteria presumably indicate missing tests—if an entity does
not meet them, the test suite is not adequately covering certain
use-cases of the software. If tests were added to execute the
uncovered entities or kill the remaining mutants, the test suite
would no longer be missing those tests.

In practice, several factors limit the usefulness of coverage
criteria at eliminating missing tests. First, it is often difficult
or impossible to completely meet a particular criterion in
a program. As a result, developers must spend significant
amounts of time to determine whether it is possible to cover
uncovered entities or kill remaining mutants. Second, even
if criteria are met, this does not guarantee the absence of
missing tests. For example, even if a statement is covered,
the test suite may be missing tests that exercise significant
edge cases. Finally, even when coverage criteria indicate the
presence of missing tests, they cannot provide developers
with details about how to write tests that are missing, which
increases the difficulty of writing these tests [17]. For these
reasons, coverage metrics only provide a partial solution for
the problem of missing tests.

In this paper, we propose a novel static analysis technique
to address the problem of missing unit tests. The approach
is motivated by the observation that applications frequently
contain sibling groups, which are groups of methods that
accomplish the same goal in different ways. For example, each
implementor of the Java Collections interface has a method
for adding an element to the collection. Because they attempt
to accomplish the same goal, siblings (i.e., the methods in a
sibling group) are often tested in the same way (e.g., each
add method is checked to ensure it correctly adds elements).
If a majority of siblings have a test with a particular purpose,
such as checking that adding null to a collection fails, it is
reasonable to infer that: (1) siblings that do not have a test with
that purpose are missing a test, (2) what is missing is a test
with that specific purpose, and (3) the existing tests with that
purpose can serve as starting points that developers can use
when writing the missing test. In this way, our approach not
only identifies the presence of missing tests but also provides
additional useful information about what tests are actually
missing. This information can be used to reduce the costs of
creating missing tests by guiding developers or automated test
case generation approaches (e.g., [18, 19]).

To assess the feasibility of the approach, we implemented it
as a plug-in to the IntelliJ IDE [20] that analyzes Java appli-
cations and test suites written using the JUnit framework [21].
With the implementation, we conducted an empirical study of
the test suites of 10 open source Java applications. The results
of this study demonstrate that the technique is effective in
finding missing tests and that it provides several benefits over
approaches that use coverage information.



Fig. 1. Overview of our approach for finding missing tests.

This work makes the following contributions: a novel ap-
proach to address the problem of missing tests, motivated by
presence of sibling groups in applications; a prototype imple-
mentation of our technique that analyzes Java applications and
test suites written using the JUnit testing framework; and an
evaluation of 10 applications/test suites that demonstrates that
our approach can: (1) effectively find and report missing tests,
(2) compare tests by determining if two tests have the same
purpose, and (3) augment and extend the information provided
to developers by code coverage.

II. APPROACH

Fig. 1 shows a high level overview of our approach for
locating and reporting missing tests. The approach takes an
application and its test suite as input and produces reports of
missing tests as output in four main steps. First, it identifies
sibling groups. Second, it associates each sibling with the
tests that test it. Third, it summarizes the purpose of each
test by determining how it tests its associated sibling. Finally,
it identifies missing tests by determining whether a majority
of siblings have a test with the same purpose. If so, siblings
that are not tested in the same way are missing a test with the
shared purpose.

To illustrate our approach, we will reference the simplified
version of the Java Collections framework shown in Fig. 2.
The Collection class declares several methods such as
remove and overrides the toString method provided by
its parent class. Collection also has two subclasses, List
and Set, both of which override remove. The tests for each
class are shown below their respective class in Fig. 2 (e.g.,
CollectionTest contains tests for Collection).

Given this example as input, our approach will report that
two tests are missing. The first is that the remove method
defined by Collection is missing a test that checks whether
an element that has been previously added can be removed
correctly. This test is missing because both Set and List
have a test (testRemove) with this purpose. The second is
that the remove method defined by Set is missing a test
that checks whether removing an element that has not previ-
ously been added returns null. This test is missing because
both Collection (removeShouldReturnNullWhen-
Empty) and List (removeFromListShouldReturn-
NullWhenEmpty) have tests with this purpose.

The remainder of this section describes the four steps of
our approach in detail and illustrates how missing tests are
reported for our running example.

A. Sibling Identification

The purpose of the first step is to attempt to locate siblings
for each method in the application. Recall that siblings are
groups of methods that accomplish the same goal. In general,
there are many ways to determine whether or not methods
accomplish the same goal. In this work, we leverage the
fact that applications written using object-oriented languages
like Java use inheritance to group entities that share common
functionality. More specifically, an overriding method must
have the name, parameters, and return type (or sub-type) as
the method it overrides. Because of these constraints, we can
consider a method and all of its overriders as siblings.

While a method and all of its overriders are siblings, not
every sibling group satisfies the constraints imposed by the
other steps of the approach. Therefore, sibling groups are
filtered based on two criteria. First, siblings that are not
testable are removed from their containing sibling groups.
A method is testable if it is declared by a class which can
be directly instantiated from a test, hence methods declared
in interfaces, abstract classes, anonymous classes, and nested
classes are not testable and are removed. Second, sibling
groups that contain fewer than three siblings are removed.
Such groups are discarded because the fourth step of the
approach checks whether a majority of siblings have a test
with the same purpose, and it cannot do this with fewer than
three siblings.

Given our running example as input, this step would con-
sider four sibling groups: one containing toString declared
by Collection, one containing remove declared by List,
one containing remove declared by Set, and one containing
remove declared by Collection, List, and Set. While
none of the methods in these sibling groups are removed
because they are not testable, three of the sibling groups are
discarded because they contain fewer than three siblings. The
only sibling group that meets all criteria is the one containing
remove declared by Collection, List, and Set.

B. Relevant Test Identification

The goal of the second step is to associate each sibling in
the sibling groups identified by the first step with its tests.
To do this, we first collect all tests by locating methods that
(1) are in a test directory, and (2) have either the @Test
annotation or follow the JUnit test naming convention (i.e.,
the method’s name starts with “test”). Then each method call
on the test’s static call graph is examined. If the method being
called is a sibling, the test is associated with that sibling.
In our running example, the remove method declared by



Fig. 2. Example application (top) and test (bottom) classes used to illustrate the approach.

the List class would be associated with the testRemove
and removeFromListShouldReturnNullWhenEmpty
tests declared by ListTest.

Because tests often rely on helper methods (i.e., methods
called by the test that are declared in the same class) and setup
methods (e.g., methods annotated with @Before), the bodies
of such methods are considered to be part of the test and are
inlined. For example, testRemove declared by SetTest
calls createSet so the methods invoked in createSet are
also considered to be part of testRemove. While assuming
a test is testing each method that it calls is a coarse heuristic, it
has the benefit of simplicity and does not appear to adversely
impact the performance of the approach. If necessary, more
advanced techniques could be applied, such as looking at
the dynamic call trace of the test or identifying its focal
methods [22]. After associating siblings with their tests, sibling
groups that have fewer than 3 siblings with associated tests
are discarded. Recall that the approach requires a majority to
identify missing tests, which cannot exist in groups with fewer
than 3 members.

C. Test Summarization

The goal of this step is to take the relevant tests identified
in the previous step and produce a representation of each test
that can be used to determine how each sibling method has
been tested. To do this, we attempt to infer the purpose of each
test. There are many possible ways to infer the purpose of a
test; in this work, we use information that is readily available
from the test itself—its name and its body. Ideally, a test
name summarizes the test in a way that is understandable to
other developers as a concise description of the test’s purpose.
However, because tests often have poor names [23], we also
consider test bodies, which also describe the purpose of a test,
albeit in a less human-understandable way.

While test names and bodies are the starting points for
inferring the purposes of tests, they cannot be used directly.
This is because the approach needs to determine whether
siblings have tests with the same purpose, and comparing
names and bodies directly (e.g., via string equality) would
fail to account for variations that break equality but do
not change the purpose. For example, a test for a method

that consumes two objects could initialize the objects in
either order without changing the semantics of the test.
Similarly, developers may use slightly different names (e.g.,
removeShouldReturnNullWhenEmpty and remove-
FromListShouldReturnNullWhenEmpty). Such vari-
ations are common and can be introduced when multiple
developers write tests or when tests are written across long
periods of time. To account for these variations, we defined
a summarization approach for each information source that
abstracts the concrete names and bodies into a form that allows
for more accurately comparing the purpose of the tests. These
summarization approaches are described in more detail below.

1) Summarizing Test Names: To summarize test names, we
use a natural-language program analysis-based approach that
is inspired by prior work on extracting meaning from test
names [23]. First, the test name is split into its constituent
words using a purpose-built identifier splitter. Then, unde-
sirable words, such as a leading “test” and numeric strings,
are removed. Finally, the remaining words are classified to
indicate the role they play in the test name. In particular,
words are classified as either part of the subject—words that
describe what functionality is being exercised by the test, part
of the response—words that describe the expected outcome
of the test, or modifiers—words that describe any additional
conditions that are applied to the subject. Classification is done
using a combination of patterns and heuristics. For example,
we found that the various parts of the name are typically
indicated by keywords or their relative positions: the subject
often comprises words at the start of the name, the response
often comes after words such as “should,” “is,” and “returns,”
and modifiers often come after words such as “when,” “given,”
and “with”. As the words in the test name are traversed in order
from left to right, they are added to the subject category until
a word that is a response or modifiers keyword is reached, at
which point the words are added to the appropriate category
until a different keyword is reached. The keywords themselves
are not included in the categories because they are often a
source of inconsequential variation (e.g., different developers
may prefer to use different keywords) and modifier keywords
are often repeated. Note that the words are stored in an ordered
list, since the order of words can be important in natural



language artifacts such as test names. The summary for a test’s
name will always have subject but, for some tests, the response
and modifiers categories may be empty.

In our running example, the summary for remove-
ShouldReturnNullWhenEmpty is that the subject of the
test is [“remove”], the response is [“null”] and the modifiers
are [“empty”].

2) Summarizing Test Bodies: To summarize test bodies, we
extract the set of methods called by the test. As in the relevant
test identification step, setup and helper methods are inlined
into the test body so that the method calls that they contain
are also included in the summary. We chose to summarize test
bodies based on method calls because their addition, removal,
and replacement tends to have a large impact on the semantics
of a test. Other aspects of test bodies, such as input parameters
and variable names, can often be changed without impacting
the purpose of the test and therefore should not be part of the
summary. For example, a method argument could be provided
directly to a method call or it could be stored in a temporary
variable that is used as the argument. The specific style that
is used does not impact the purpose of the test. Additionally,
we store the method calls as sets rather than ordered lists to
allow for further variation between two tests. This is desirable
because we have found that the addition of a method call that
was already made or a change in the order of method calls
does not necessarily change the purpose of a test.

In our running example, the summary for remove-
ShouldReturnNullWhenEmpty declared by Collec-
tionTest contains the calls to remove declared by Col-
lection and assertNull from the JUnit framework.

D. Missing Test Identification

The last step of the approach is to generate missing test
reports by analyzing the siblings and the summaries of their
associated tests. Intuitively, a method is missing a test if it
lacks a test with a summary that is shared by a majority of
the tests of its siblings. More formally, we say that a sibling
supports a summary s if at least one of its tests has a purpose
that is the same as or subsumes s. Then, if a majority of
siblings that have associated tests in a group support s, siblings
which do not support s are missing a test with the purpose
that s represents. Siblings without tests cannot provide support
and therefore are not included in the majority calculation.

Subsumption is a broadening of the concept of equality
that takes into account that a test can serve the same pur-
pose and more of another test. For example, the purpose
of removeShouldReturnNullWhenEmpty defined by
CollectionTest subsumes the purpose of testRemove
defined by SetTest because the focus of both tests is
the remove method (i.e., the subject is [“remove”]) and
removeShouldReturnNullWhenEmpty includes addi-
tional conditions on how remove should be tested (e.g., its
modifiers are [“empty”]).

To determine whether a name summary SN1 subsumes
another name summary SN2, the lists associated with each
category are checked to see whether the subject, response,

and modifiers of SN2 are prefixes of the corresponding lists
in SN1. We use prefixes to determine subsumption as opposed
to simple membership due to the fact that word order can carry
meaning in test names. Note that in this comparison, an empty
list is considered a prefix of all lists with a size greater than
zero. If the lists of SN2 are prefixes of the corresponding lists
in SN1, then SN1 subsumes SN2 meaning that the sibling
associated with the test that SN1 came from supports SN2. To
determine whether one body summary SB1 subsumes another
body summary SB2, we simply do a set comparison between
the two summaries, which are themselves sets of methods.
SB1 subsumes SB2 if SB2 ⊂ SB1, meaning that the sibling
associated with the test that SN1 came from supports SN2.

Once support is calculated for all summaries, a report is
generated for any method that does not have a summary that
is supported by a majority of its siblings. A report contains
the location of the method missing the test, the name or body
summary used to represent the purpose of the test, and the set
of tests from which the summaries supporting the report were
derived. Both the summary and the set of tests supporting that
summary provide developers with a starting point with which
to address the missing test report.

Only reporting a missing test when it has the support of a
majority of siblings helps filter out noise that was introduced
in Step 2. Unrelated tests and tests that are tailored for a
particular method will not be able to amass enough support to
be reported missing. Additionally, using a majority to decide
which tests are missing allows us to back each reported
missing test with some level of confidence. If a report with the
same summary is generated for a method multiple times, this
is considered a duplicate and only the report with the highest
level of support is kept. This situation can arise if a method
is in multiple sibling groups (i.e., it is inherited from a parent
class, and is in turn overridden by a child class).

In our running example, a majority of methods—remove
from Collection and List—have tests that support a
name summary where the subject is [“remove”], the response
is [“null”], and the modifiers are [“empty”], so we report it
missing from the remove method in Set. This summary
has a support of 2

3 since it is present in the tests of two
methods and missing from the tests of one method. Similarly,
a body summary containing the method calls add, remove,
assertEquals, and size is supported by the tests of the
remove methods from Set and List, so it is reported
missing from the remove method from Collection. This
summary also has a support of 2

3 since it is present in the tests
of two methods and missing from the tests of one method.

III. EVALUATION

We evaluated our technique by using a prototype implemen-
tation to answer the following research questions:
RQ1—Effectiveness: How effective is our approach in finding

missing tests?
RQ2—Comparison of Summarization Approaches: Are both

test summarization methods needed to find missing tests?



TABLE I: Subjects used in our evaluation.
# Application # Test # Reports

Subject Version Classes Methods Groups Siblings Classes Methods MT CR ER Total

Barbecue 1.5 75 649 7 47 25 171 35 6 0 41
Checkstyle 8.23 3,360 8,544 13 659 304 3,097 1,028 58 0 1,086
Comm. Coll. 4.3 544 4,545 148 56 215 1,138 78 0 2 83
Comm. Math 3.4.1 1,120 7,823 61 330 444 3,192 371 22 31 424
JFreeChart 1.5.0 684 8,782 89 648 341 2,176 317 47 38 402
Joda Time 2.9.7 321 4,738 34 134 135 4,238 29 13 15 57
Jopt 6.0 70 430 2 14 132 539 18 2 0 20
Tablesaw Core 0.36.0 291 3,646 25 187 81 924 176 9 24 209
Threadly 5.36 347 2,176 8 50 141 1,331 23 0 0 23
ZXing Core 3.3.3 255 1,576 2 16 129 563 11 0 0 11

Total 7,067 42,909 389 2,141 1,974 17,369 2,086 157 113 2,356

RQ3—Comparison to Coverage: How does our method com-
pare to coverage as a method of finding missing tests?

The remainder of this section presents our: (1) prototype
implementation, (2) experimental subjects and selection pro-
cess, (3) methodology for generating experimental data, and
(4) results and discussion for each research question.

A. Prototype Implementation

Our technique is implemented as an IntelliJ plugin. This
platform was chosen due to its popularity among software
developers as well as the ease of use of its plugin API,
which gives access to IDE internals. The plugin API provides
convenient wrapper functions to search for different types of
nodes on the abstract syntax tree, which is heavily annotated
with semantic information. Our plugin provides a menu item
that can be used to analyze an application loaded in the IDE.

B. Subject selection

We chose the 10 open source applications shown in Tab. I
for our evaluation. The first and second columns show the
name and the version of each subject. The two columns under
the header Application show the number of application classes
and methods in each subject and the two columns under the
header Test Suite show the number of test classes and methods
in each test suite. For example, the first row shows that
Barbecue has 75 application classes, 649 application methods,
25 test classes, and 171 test methods. The number of classes
and methods was calculated using the IntelliJ plugin API,
which can enumerate various types of program elements.

We chose these subjects for several reasons. First, they come
from a variety of organizations and developer teams, such as
the Apache Software Foundation and Google. Second, they
cover a wide variety of application domains. For example,
Commons Math is a mathematical library and JFreeChart is a
chart creation framework. Third, they have relatively large test
suites that we were able to run to obtain coverage information,
which is important for answering our third research question.
Fourth, they vary in size and structure, which can be seen by
looking in Tab. I at the numbers of application classes and
methods and the ratio of classes to methods. Finally, many of
these applications have served as subjects for other software
testing research (e.g., [24, 25, 26]). These factors give us

confidence that we have selected representative subjects that
do not present a threat to the generality of our results.

C. Methodology

The experimental data used in our evaluation was obtained
by loading each application into the IntelliJ IDE and analyzing
it with our plugin. The plugin executed in under 30 seconds
for most subjects and under 3 minutes for the largest subjects.
In total there were 2,356 reports generated for our subject
applications. We have released these results along with the
tool: doi.org/10.5281/zenodo.3987298. The number of reports
for each subject is shown in column Total in Tab. I.

In order to evaluate the approach, each of 2,356 reports
was manually examined and classified as either a missing
test report, a candidate for refactoring report, or an erroneous
report. Each author performed this classification independently
using the information provided by the report as well as the
application and its test suite. Agreement was high and cases
of disagreement were handled by discussion among the authors
until a consensus was reached.

Missing test reports are reports that correctly indicate that
a test is missing. For example, a body report with a support
level of 120

121 (99%) indicating that the clone method declared
by the SamplingXYLineRenderer class from JFreeChart
should have a test that calls clone, getClass, equals,
and assertTrue is considered to be a missing test report
because clone has no tests like this.

Candidate for refactoring reports are reports where the test
indicated by the report does exist but is inconsistent with the
tests shared by its siblings in a minor way. For example, a
name report with a support level of 119

121 (98%) indicating that
the clone method declared by the TimeTableXYDataset
class from JFreeChart does not have a test with the subject
[“cloning”] is considered to be a candidate for refactoring
report because clone has a test with the similar but different
subject [“clone”]. While they do not indicate missing tests,
we believe such reports to be useful, as these inconsistencies
are trivial to fix and may inhibit comprehension and mainte-
nance. In future work, we plan to extend the summarization
approaches to handle these inconsistencies (e.g., by applying
stemming and lemmatization). This would allow many candi-
date for refactoring reports to be automatically classified.

doi.org/10.5281/zenodo.3987298
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Fig. 3. Reports shown by subject and support level for each category of report.

Erroneous reports are reports where the test indicated by the
report cannot exist. For example, a name report with a support
level of 3

4 (75%) indicating that the getYValue method
declared by the XYBarDataset class from JFreeChart does
not have a test with the subject [“add” “series”] is considered
to be an erroneous report because there is no addSeries
method declared in XYBarDataset. Therefore such a test
is impossible to write. Note that while we consider such
reports erroneous it is possible that they may provide useful
information about missing functionality in an application or
highlight situations that warrant further investigation. For
example, why do DefaultXYDataset, DefaultXYZ-
Dataset, and DefaultIntervalXYDataset declare an
addSeries method while XYBarDataset does not? Per-
haps addSeries should be part of the parent interface XY-
Dataset. In addition, in future work we plan to add support
for automatically identifying cases where a summary indicates
that a method that does not exist should be called. This will
allow for automatically filtering some of the erroneous reports.

The number of reports in each category for each subject
is shown in the seventh, eighth, and ninth columns in Tab. I:
column MT shows the number of missing test reports; column
CR shows the number of candidate for refactoring reports; and
column ER shows the number of erroneous reports.

Note that we do not calculate the false negative rate (tests
that are missing but not identified by our approach) due
to the following complications inherent in this calculation:
(1) there are possibly infinite tests that could be written for
an application, and (2) there is not a straightforward way of
identifying a subset of these to use as a golden set of missing
tests against which to judge our approach.

D. RQ1—Effectiveness

The goal of our first research question is to evaluate the
effectiveness of the approach in producing useful reports.
In order to investigate this research question, we consider
the classification of the reports produced for our subject
applications as well as their support levels.

Fig. 3 presents this data as a series of scatter plots, one for
each category. In each plot, each point represents the number
of reports in the corresponding category with the position
along the x-axis showing the support level and the position
on the y-axis showing the subject the report came from. The

legend to the right of the plot shows to what extent dots vary
in size depending on how many reports they represent. For
example, the left scatter plot shows that Checkstyle has a large
number of missing test reports with a support level of 0.5
and the middle scatter plot shows that Tablesaw Core only
has a small number of candidate for refactoring reports with a
support level of ≈0.8. The large number of reports with certain
levels of support is partially due to the fact that support is not
evenly distributed because sibling groups can only produce
certain support levels (e.g., reports for a group with size 3 can
only have a support level of 2

3 ≈ 0.6 or 3
3 = 1.0).

Based on the data presented in Fig. 3, we can make several
observations. First, there are missing test reports generated
for each subject. This indicates that the problem of missing
tests is not a phenomenon unique to a small number of
applications. Second, the number of reports for a subject is
positively correlated with the size of the application and the
size of its test suite in terms of the number of application
and test classes/methods. This suggests that larger applications
and test suites are more likely to have missing tests, possibly
because in these situations it is more difficult for a developer
to have a sufficiently broad understanding of the various parts
of the application and how it should be tested. Third, the
majority of reports are missing test reports (2,086) and the
number of useful reports (i.e., missing test and candidate for
refactoring reports) far outweigh the number of erroneous
reports (2,243 compared to 113). This is significant because
high false positive rates (e.g., erroneous reports) are one
of the main reasons that developers abandon static analysis
tools [27]. The erroneous reports are not evenly distributed
across the subjects, with the majority (≈80%) coming from
three subjects, Commons Math, JFreeChart, and Tablesaw
Core. Further investigation revealed the cause of this to be
the presence of groups whose siblings cannot always share the
same tests. For example, in Tablesaw Core, the implementation
of the where method from the Column interface is used for
selecting a subset of data. Some of the where siblings, such
as the ones declared in TextColumn and StringColumn,
have tests for selection based on string case, which does not
make sense for where methods declared in classes such as
BooleanColumn and DoubleColumn. The presence of
such subgroups increases the rate of erroneous reports due to
differences that exist between siblings in different subgroups.



Finally, reports with higher levels of support are more likely to
be missing test reports than erroneous reports. For example,
with the exception of Commons Math, none of the subject
applications have an erroneous report with support greater than
0.8. This suggests that developers can reduce the number of
erroneous reports by filtering reports based on support level.
However, this may also reduce the number of useful reports
by filtering out both missing test and candidate for refactoring
reports. For example, while filtering reports with support less
than 0.8 would lower the number of erroneous reports to 6, it
would also eliminate 1,470 useful reports (1,365 missing test
reports and 105 candidate for refactoring reports).

Based on above observations, we conclude that our approach
is effective at providing developers with useful information
about how to improve the quality of their test suites.

E. RQ2—Comparison of Summarization Approaches

The goal of our second research question is to compare our
test summarization approaches. Specifically, we are interested
in finding out if the reports produced using one summarization
approach are (1) duplicates of reports produced using the other
summarization approach, and (2) found to be useful at a higher
rate than reports produced using the other summarization ap-
proach. Understanding differences between the summarization
approaches will provide valuable feedback for improving our
tool and guidance for how it should be used in practice.

1) Report Duplication: First, we investigated whether re-
ports produced using one summarization approach are du-
plicates of reports produced using the other summarization
approach. We are interested in knowing this because the
existence of many duplicates would indicate that only one
summarization approach is required.

To determine if duplicate reports exist, we need to be able
to compare reports. However, name and body reports cannot
be directly compared, as they have different representations
(ordered lists and sets, respectively). Instead, we use the
support sets of the reports as the basis for comparison because
they are in terms of test methods for both types of report. We
have the option of using several existing set comparison algo-
rithms (Szymkiewicz-Simpson coefficient, Jaccard similarity,
Sørensen-Dice coefficient, etc.). We chose Jaccard similarity
because it takes differences in set size into account. For
example, a set of size 3 and a set of size 100 will always
have a low Jaccard similarity even if the former is a subset
of the latter. This is desirable because the size of the support
sets is an important factor in the similarity of two reports.

Using Jaccard similarity we can find the similarity of the
most similar report generated by the other summarization ap-
proach as follows: similarity(r,R) = maxr′∈R jaccard(r, r′)
where r is a report based on one summarization approach
and R is all reports generated using the other summarization
approach. The results of this equation range from 0 to 1,
with 1 indicating that the support sets are identical (i.e., both
approaches report the same missing test) and 0 indicating that
the support set r has no overlap with any report in R (i.e.,
it is unique to one summarization approach). Note that this

TABLE II: Percentage of reports in each category.
% of Non-Duplicate Reports

MT CR ER

Subject N B N B N B

Barbecue 89 84 11 16 0 0
Checkstyle 93 96 7 4 0 0
Commons Collections 92 100 0 0 8 0
Commons Math 80 90 7 6 12 4
JFreeChart 84 65 8 21 8 14
Joda Time 27 50 27 50 45 0
Jopt Simple 80 93 20 7 0 0
Tablesaw Core 94 96 6 4 0 0
Threadly 100 100 0 0 0 0
ZXing 100 0 0 0 0 0

All 88 89 7 8 5 3

calculation is not always symmetric (i.e., n may be the most
similar name report for body report b but b may not be the
most similar body report for n).

Fig. 4 shows the results of our similarity calculations as a
histogram that plots the distribution of name and body report
similarities. The x-axis divides the similarity range into 20
equally spaced bins and the y-axis shows the number of reports
that fall into a given bin. Each bin has two bars: one for name
reports (light) and one for body reports (dark). For example,
the left bar for the 0.75 bin shows that the number of name
reports (29) whose highest similarity score with a body report
is 0.75, and the right bar shows that the number of body reports
(30) whose highest similarity score with a name report is 0.75.

Based on the data shown in Fig. 4, we can make two
observations. First, there are many fewer duplicate reports,
376 ≈16%, than there are unique reports, 894 (456 name
and 429 body) ≈38%. Note that as a sanity check, we
confirmed that all duplicated reports were classified in the
same category. The small number of duplicate reports show
that the summarization approaches generate different reports,
which means both should be used. Second, there are a large
number of reports that have high similarity scores (i.e., scores
above 0.9). This suggests that there are many tests with
identical names but small differences in the body or vice versa.

2) Effectiveness: Second, we investigated whether each
summarization approach produces useful reports.

To investigate this, we partitioned the non-duplicate reports
by summarization approach. Since duplicated reports are in
the same category regardless of which approach was used
to generate them, they do not contribute to answering this
research question and therefore are excluded.

The results of this partitioning can be seen in Tab. II.
The first column shows the subject applications. The next
six columns show the percentage of non-duplicate reports
for the respective subject application that were generated by
each summarization approach, Name or Body, grouped by
report category—missing tests, candidates for refactoring, and
erroneous reports. For example, in Commons Math, 80% of
name reports and 90% of body reports are missing test reports,
7% of name reports and 6% of body reports are candidate
for refactoring reports, and 12% of name reports and 4% of
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Fig. 4. Histogram of the similarity of reports.

body reports are erroneous reports. The last row shows the
same break down across all subject applications.

Based on the data shown in Tab. II, we make two main ob-
servations. First, as shown in the All row, both summarization
approaches generate reports at nearly identical rates across all
subjects, differing at most by 2%. This indicates that both
approaches are effective at generating useful reports.

Second, there are exceptions to this trend on a per-
application basis. The largest discrepancy between the rates
exists in Joda Time, where 45% of name reports and 0%
of body reports are erroneous. Further investigation revealed
that these erroneous reports were for the getChronology
method declared by the Partial class. Its siblings, declared
in LocalDateTime and LocalDate, are used in tests for
constructors of their respective classes, such as testCon-
structor_long1, which checks the constructors of the
LocalDateTime and LocalDate classes with a long
input parameter. However, the getChronology declared
in Partial cannot have this test, since Partial has no
constructors that have a long parameter. This indicates that
the effectiveness of the summarization approaches can depend
on specific details of the test suite of the application.

3) Conclusions: In summary, we have shown that both
name and body summaries can be used to find unique missing
tests. Additionally, both summarization approaches can be
effectively used to find missing tests. Further, they generate
reports in each category at similar rates across all subjects,
with exceptions to this trend occurring in a minority of our
subjects. Thus, we conclude that there is merit in using both
summarization approaches to find missing tests.

F. RQ3—Comparison to Coverage

The goal of our third research question is to compare our
approach for finding missing tests against an approach based
on statement coverage. As coverage is the most common way
of finding missing tests, this is a useful comparison to make.

The typical workflow for finding missing tests using state-
ment coverage starts with running the test suite and recording
the execution statistics. These statistics are usually aggregated
in a report document, which allows developers to see coverage
statistics at various levels of granularity (e.g. package, class,
method). We carried out this procedure on each of our subject
applications and present the results at the method level.

Tab. III shows the number of methods that are uncovered
(0% coverage), partially covered (1% to 99% coverage), and
fully covered (100% coverage) in each subject. For example,
in Barbecue there are 245 uncovered methods, 23 partially

covered methods, and 238 fully covered methods. This data
was obtained by running the test suite of each application and
collecting coverage information using the JaCoCo tool [28].
Note that in some cases the numbers of methods presented
here are different than the ones presented in Tab. I. This is
because IntelliJ and JaCoCo count methods differently. For
example, JaCoCo does not include abstract methods or empty
methods as these cannot be covered.

After coverage information is obtained, it must be manually
examined to determine if there are any missing tests. Because
coverage information is reported for every method (between
430 and 8,782 for our subjects), developers must prioritize
where to spend their limited time and effort. The typical
prioritization strategy is to ignore fully covered methods and
focus on those that are uncovered or partially covered. While
this does provide some benefit, the number of methods that
need to be examined can still be large (between 38 and 4,157
for our subjects). In addition, developers must understand more
than just the method itself in order to understand if it is missing
a test. At a minimum, they must examine and understand
the purposes of all the existing tests for that method. If they
have detailed knowledge of the method’s requirements, then
this might be enough to identify whether or not a method is
missing tests. If not, they must broaden their investigation to
include other parts of the application and its test suite as well
as external resources. Even when focusing only on uncovered
and partially covered methods, identifying whether or not a test
suite is missing tests is an arduous, time-consuming process.
Finally, if developers decide that a test is missing, they must
write that test from scratch. Again, this requires not only a
detailed understanding of the method and its requirements but
also the ability to match those requirements to concrete test
cases. Overall, addressing the problem of missing tests using
coverage information alone clearly has many drawbacks.

In contrast, our approach provides developers with a simpler
and easier process that has several benefits. The first benefit is
that the reports generated by our approach provide contextual
information such as the support set, which explains why
the approach believes a test is missing and simplifies the
process of understanding whether or not a method is missing
a test. Coverage information provides nothing beyond which
elements were executed (and potentially how many times).

The second benefit is that the number of methods which
developers need to examine is much smaller. While the number
of uncovered and partially covered methods that developers
would need to examine ranges from 38 to 4,157 for our
subjects, the number of reports generated by our approach



TABLE III: Coverage of methods in each subject.
# Methods

Subject None Partial Full

Barbecue 245 23 238
Checkstyle 3,867 290 3,629
Commons Collections 420 260 2,401
Commons Math 669 556 4,642
JFreeChart 2,900 1,078 3,889
Joda Time 254 206 2,729
Jopt Simple 28 10 362
Tablesaw Core 1,195 285 1,881
Threadly 141 111 1,013
ZXing 195 308 1,043

Total 9,914 3,127 21,827

ranges from 11 to 1,086. In some cases, the number of reports
is an order of magnitude smaller than the number of uncovered
and partially covered methods.

To gain a more detailed understanding of how the reports
generated by our approach compare to what can be learned
from coverage information, we matched each missing test
report with the coverage of the method it reports. Fig. 5 shows
the results of this process as a histogram. In the figure, the
x-axis shows the three levels of coverage: uncovered (0%
coverage), partially covered (1% to 99% coverage), and fully
covered (100% coverage). The y-axis shows the number of
reports whose reported method is in each coverage group.
Coverage data was unavailable for the methods of 27 reports,
so the results represent 2,059 out of 2,086 missing test reports.

From this data, we can see that there is some overlap in
the reports generated by our approach and uncovered and
partially covered methods. In particular, there are 323 reports
whose method is uncovered and 91 reports whose method
is partially covered. These are reports that indicate missing
tests that could be found using the coverage-based approach
detailed above. However, our approach directly presents these
cases to developers without the need for extensive manual
analysis. Note that we are not claiming that our approach
finds all missing tests. It is possible that developers may find
more or different missing tests using coverage information.
Nevertheless, we believe that the savings in terms of manual
effort provided by our approach are a significant benefit.

Fig. 5 also highlights the third benefit of our approach: it
can identify missing tests for methods that are fully covered.
In fact, the majority of missing test reports generated for
our subjects (1,645 of 2,059) are for methods with 100%
coverage. These are reports indicating missing tests that could
not be found using the coverage-based approach. Locating
them would require analyzing all methods regardless of their
coverage level. The ability of our approach to identify such
cases is especially promising, as developers often incorrectly
believe that fully covered methods are also sufficiently tested.

The final benefit of our approach is that it provides devel-
opers with guidance when they implement the missing tests.
Again, coverage only provides information about what entities
are executed. In the coverage-based approach, developers
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Fig. 5. Histogram of the coverage of reported methods.
must either write tests from scratch or manually search for
example tests within the test suite. Our approach provides
developers with example tests directly, eliminating the need
for this. Moreover, the information in the reports can help
developers maintain consistency with existing related tests,
which can prevent the introduction of deviations that can
impact comprehension and maintenance tasks. For example,
consider a name report with a support level of 3

3 (100%),
which indicates that the hashCode method declared by the
TimePeriodValues class from JFreeChart does not have
a test name summary whose subject is [“hash”,“code”].

Fig. 6a shows two representative tests from the siblings
of TimePeriodValues for their hashCode methods that
support the report. Due to space limitations we have elided
part of each test. The removed parts are four repetitions of the
fifth through eighth lines in each test with different arguments
to the add method. Fig. 6b shows the test that we believe
developers would write to address the report. As these figures
show, only trivial differences exist between the tests for the
siblings (the other sibling differs in the same manner) and
the test that would be written to address the missing test
report. In particular, the types of s1 and s2 must be changed
to TimePeriodValues which necessitates changing the
constructor calls and the parameters to the add method.

In summary, our approach provides significant benefits over
a coverage-based approach for finding and addressing missing
tests. First, developers have fewer reports to consider. Second,
the reports require less manual analysis. Third, our approach
can find missing tests that cannot be found using the coverage-
based approach. Finally, the reports provide information that
can be used to more easily implement the missing tests.

G. Threats To Validity

Although a diverse selection of subjects was used for
evaluation, the results might not generalize to other subjects.
Additionally, all subjects examined are written in Java and
use the JUnit testing framework and the results obtained may
not generalize to other programming languages and testing
disciplines. We relied on heuristics provided by the Intellij
plugin API in order to find test classes and determine which of
their methods are test methods. Inaccuracies in these heuristics
could have led to some test classes or methods not being
identified. Additionally, the results are sensitive to how sibling
groups are formed since disparate functionality can be grouped
together in an unexpected ways, so a different method of
grouping could lead to a different outcome. However, the low
erroneous report rate shows that the impact of these situations
is low.



(a) Example tests from siblings of TimePeriodValues.

(b) Test that should be written for TimePeriodValues.

Fig. 6. An example of how existing tests can be used to fill in a missing test.

Further, we used a conservative heuristic for establishing
test to code links. We chose to use the static call graph to
associate tests to code because it is simple to implement since
IntelliJ provides this information and it is conservative in that
any method that could be called by a test is associated with that
test. However, related work has demonstrated that there are
many other approaches for performing test-to-code traceability
(e.g., [29, 30, 31]). Because of the different performances of
such approaches, using them instead of the static call graph
may impact the results of our work. For example, using a
less conservative technique (e.g., the approach proposed by
Ghafari et al. which identifies focal methods ≈85% of the time
[29]) would likely reduce the number of siblings and sibling
groups considered by the approach because there would be
fewer test-to-code links. However, without additional studies
it is not clear how using an alternative technique would impact
the overall results of our approach.

Next, the performance of our approach may also be im-
pacted by various test smells. Eager tests [32], would be
associated with each method that the test calls. This could
lead to tests being included in more sibling groups. However,
this would only lead to false positives when the same pattern
of calls is repeated among a majority of siblings in these
additional groups. Tests that rely on dependencies could also
impact the formation of sibling groups in a similar way.
Both of these issues could potentially be addressed by using
an alternative test-to-code traceability technique as discussed
above. Additionally, an expanded evaluation could examine

the causes of erroneous reports more in depth and quantify the
impact of these test smells. Finally, note that assertion roulette
[32] is unlikely to impact our results. Because body summaries
are sets of methods, calling the same method multiple times
will not change the outcome.

Finally, the reports were categorized with the subjective
judgment of people who are not developers for any of the
subjects. This lack of precise domain knowledge could have
influenced how reports are categorized, which could call into
question the number of reports determined to be in each
category. In order to mitigate this, we formed guidelines for
categorizing reports, which ensured consistency.

IV. RELATED WORK

A large amount of research has been conducted in evaluating
and improving test suites. Given the controversial relation-
ship between coverage metrics and fault finding capabili-
ties [33, 12, 34, 11, 15, 10], many alternative approaches have
been proposed to better assess and improve test suites. These
include checked coverage [35], (in)direct coverage [24], as
well as various forms of mutation testing [26] [36]. These
metrics have also been used to drive test case generation [16,
19, 18, 37]. Our approach does not seek to replace, but rather
to complement this body of work, since we use existing tests
to propose improvements without attempting to provide a
comprehensive solution to address all insufficiently covered
code. Directed test case generation in particular is an area
in which information learned using our approach can be
incorporated to potentially improve performance. Additionally,
our method takes a lightweight static analysis approach to
find potential missing tests as opposed to the more expensive
approaches taken by other methods such as mutation testing.

Prior work has found that code clones are both common
in in test suites [38] and require novel forms of code clone
detection [39]. Other researchers have investigated how this re-
dundancy can be leveraged to improve test suites. Landhäußer
and Tichy propose cloning test cases to reuse for similar
components, but their method lacks the ability to automatically
identify those components [40]. Mirzaaghaei et al. use existing
tests to support test suite evolution, using a coverage driven
approach [41]. Mining open source test suites to augment an
application’s test suite has also been proposed [42, 43].

V. CONCLUSIONS

In this work, we have presented a novel method for detecting
test suite deficiencies based on static analysis of program
structure and the different ways of summarizing tests to
facilitate finding tests with similar purposes. We presented the
results of an empirical study of 10 real world applications
that demonstrate: (1) missing tests are a common problem
in test suites and, but also (2) our technique is capable of
providing feedback to address them. Consequently, our results
show that existing tests can be leveraged by developers as a
straightforward way of improving test suites.
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